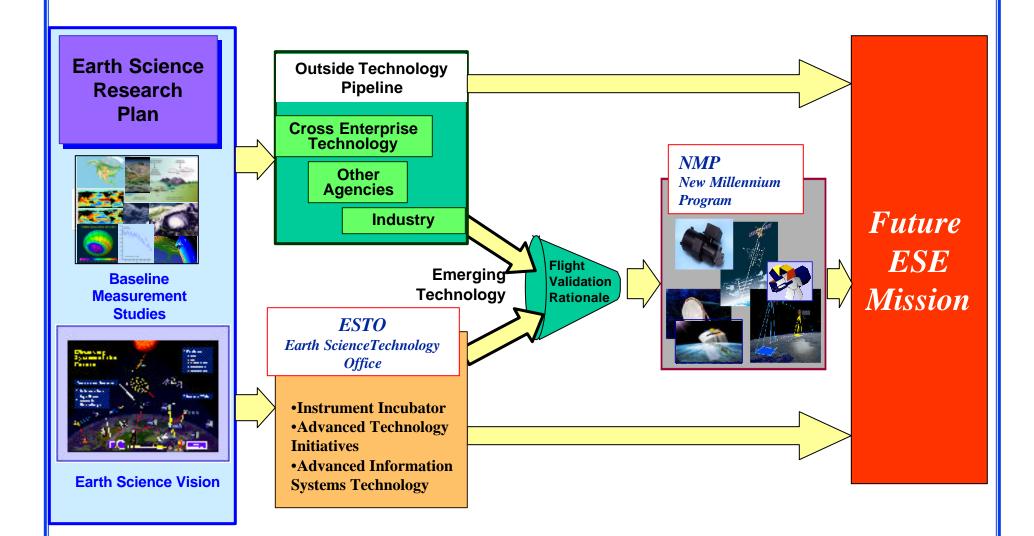


NASA Earth Science Enterprise Technology Planning Workshop

Overview of Key Technology Areas


George Komar

ESTO
Goddard Space Flight Center

January 23-24, 2001 Hyatt Arlington Hotel - Arlington, VA

ESE Technology Development Process

Approach to implementing the process

- NMP and ESTO have initiated planning for spacecraft and instrument technologies to enable Earth Science Enterprise (ESE) missions with a time horizon of 5 to 15 years
- Derived from existing ESE science planning documents (ESE Strategic Plan, Earth Science Implementation Plan, Easton Report)
- ESTO has identified critical technologies of overall importance to ESE
 - Large deployable structures
 - Radiometers
 - Radar
 - Laser/LIDAR
 - On-board computing
- NMP has identified key component technologies that could potentially require a validation in space to reduce their cost and risk to the first science user
 - Large, Light-Weight Deployable Antennas
 - Light-Weight Deployable UV/Visible/IR Telescopes
 - Ultra-High Data Rate Communications
 - Intelligent Distributed Spacecraft Infrastructure
 - High Performance Spectrometry
- These candidate technologies were presented to the ESE Associate Administrator for his review and concurrence

ESTO planning/ ranking process

NASA

- Use 'needs' from BMS (Easton)
- Use desired measurement dates from SIP V.2
- Focus on target launch dates of '05-'07 (3 years) for immediate technology investments

<u>Platform</u>

Material & Structures

Comm

GN&C

C&DH

Power

Instrument

Detectors & Filters

Radar

Spectrometers

Optics GPS

Lidar/ Laser

Radiometer

Info Systems

Intelligent Platform control

On-board processing/ inst. cont.

On-board data storage/ processing

Transmission

Comment

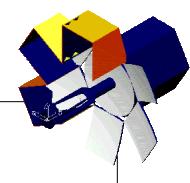
Large deployable apertures needed High bandwidth downlink desirable Elements being developed elsewhere

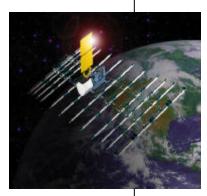
No strong needs No strong needs

Nothing pressing

Strong needs

No strong needs No strong needs No strong needs


Strong needs


Strong needs

No strong needs

Strong needs

No strong needs No strong needs

Proposed priority technology areas

Platform

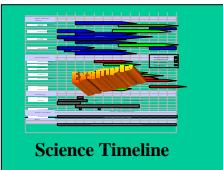
M&S (large deployables)

<u>Instrument</u>

Radar

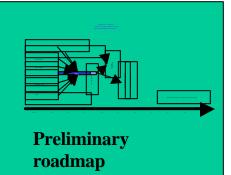
Radiometers
LIDAR / Laser

Info systems


On-board processing/

sensor control

Typical Workshop Process



Input Workshop Output

- •Small team
- •One day
- •Science and technology backgrounds
- •"in the business"

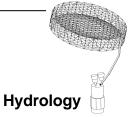
- •List of Technology tasks
- •Rough scoping of tasks
- •Suggested timing

Improve

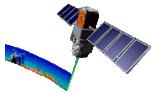
Wo	<u>rks</u> t	nop	Statu	<u>s</u>
				_

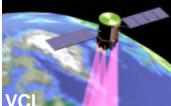
Topic	<u>Date</u>
Lidar/ Laser	4/20/00
Radar	4/20/00

Materials and Structures


(Large deployables)5/3/00Information Technology8/29/00Radiometers11/1/00

Summary of Workshop Key Findings Key Conclusions Next Steps


Workshop Title

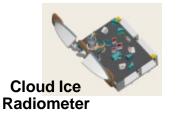

Materials and Structures (Large deployables)

- Many benefiting missions
- · Many types of deployables
- Wide ranging requirements
- · Issues include materials, actuation
- Formulate development sequence
- Support mission concept
- Establish performance metrics
- Hand off (as appropriate) to NMP

Lidar / Laser

- Many benefiting missions
- Many types of laser systems with several common elements • Replan roadmap with lower
- Wide ranging requirements
- Issues include diode lifetime. efficiency, autonomous ops.
- Define rules for stretching deliveries
- funding requirements

Radar



- Many benefiting missions
- Antenna technology key
- Improved rf also critical
- Define rules for stretching deliveries
- Replan roadmap with lower funding requirements

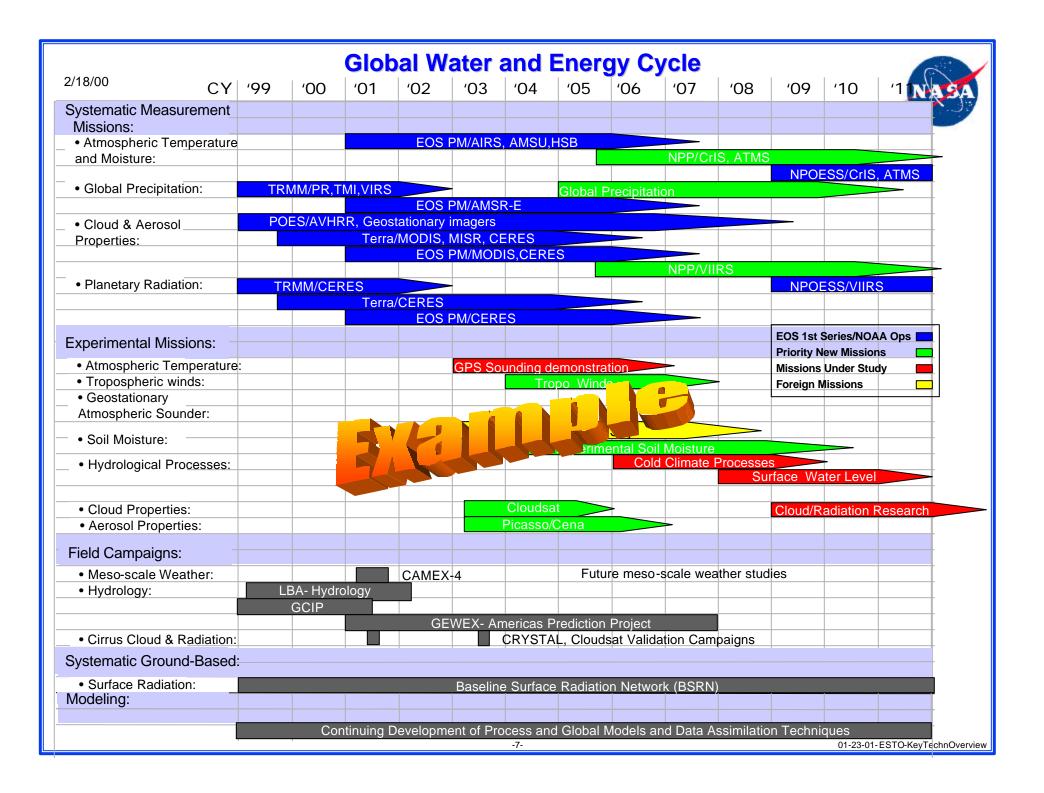
Develop investment priorities

L-band Tandem SAR

Radiometers

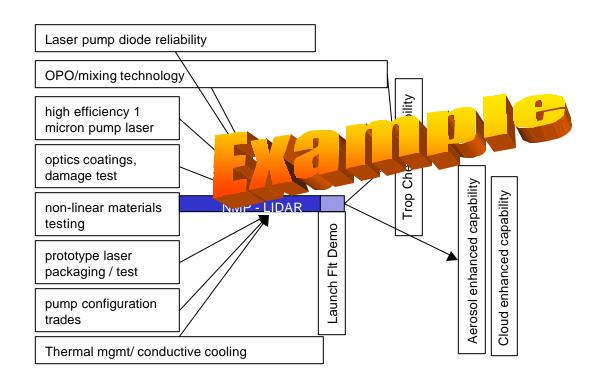
Many benefiting missions Several investment areas:

- Polarimetry
- mm and submm radiometry comp.
- mw receivers
- STAR
- Spectrometers


Information Technology (onboard processing/ sensor control

- Crucial to near term missions with reconfigurable observations
- Fundamental to the Visions Sensorweb concept
- Develop investment priorities
- Solicit proposals

Solicit proposals


Global Precipitation

Sample of Roadmaps in breakout packages

Lidar Roadmap

Tropospheric Chemistry/ Enhanced Aerosol Radiative Forcing/ Enhanced Cloud-Radiation Feedback

Need date assumed to be launch date minus 2-3 yrs

Sample of Workshop output (Radiometry)

WBS			Explanation / comment	Scope		
Functional product	Task	Subtask		Level of effort	No. yrs needed	Delivery date
MM and Submm Radiometers	Develop improved ambient-temperature Schottky-diode submillimeter- wavelength radiometers	Improve sensitivity ~2x or more over that achieved or EOS MLS, with priority on 640 GHz band.	Needed for EOS-7 MLS (baseline, enhanced, minimum); 640 GHz is key band for stratospheric chemistry	2	2	2004
MM and Submm Radiometers	Develop, improve and flight-qualify millimeter-wavelength MMIC components and modules	Assure performance, and flight-qualify, MMIC received modules now being developed at 100-140 GHz and 170-210 GHz under IIF program. Collaborate with an industry partner and perform environmental tes of prototypes.	sounders, cloud water vapor, severe storms missions. 10 140 GHz is key band for temperature. 170-210 GHz is key band for water vapor and	3	3	2005
MM and Submm Radiometers	Develop, improve and flight-qualify millimeter-wavelength MMIC components and modules	Extend MMIC receiver modules upward in	Needed for hig	1	3	2005
MM and Submm Radiometers	Develop, improve and flight-qualify millimeter-wavelength MMIC components and modules	and integrated digitizers fo bands at 50, 118 and 183 GHz	Needed for synthetic thinned array radiometer system for geosynch atmospheric sounders	3	3	2005
MM and Submm Radiometers	Develop, improve and flight-qualify millimeter-wavelength MMIC components and modules	Develop low power- consumption fixed- frequency submm local oscillator sources and systems, with priority at 640 GHz and 2.5 THz	Needed for EOS-7 MLS and cloud ice missions. 640 GHz is key band for stratospheric chem and cloud ice. 2.5 THz needed for possible OH measurements with enhance EOS-7 MLS	2	3	2005
MM and Submm Radiometers	Develop and improve submillimeter and millimeter-wavelength solid-state local oscillator systems	Develop low-power tunable (~10% or greater tunability desired) mm and submm local oscillator sources. Priority bands are 640 GHz 2.5 THz	Can enable new class of 'smart sensors' that can be programmed to provide (1) more efficient measurement and (2) measurement	2	3	2005